|
|
ISSN 3105-7497(Print)
|
| 杂志简介 | 更多... |
中文刊名:《数据科学与工程》
英文刊名:Data Science & Engineering
国际刊号:ISSN 3105-7497(印刷版) / ISSN 3105-7500(网络版)
出版模式:金色开放获取(Gold OA),适用CC BY 4.0协议(全文永久免费)
出版机构:QUEST PRESS LIMITED
出版频率:双月刊
投稿语言:中文(需附英文标题、摘要、关键词、作者单位及姓名)
核心定位
《数据科学与工程》是一本聚焦数据驱动创新与工程实践的国际化学术期刊。本刊致力于推动数据科学理论方法与工程应用的深度融合,重点关注大数据技术、智能算法与系统工程的前沿发展。我们特别鼓励跨学科的研究范式,融合计算机科学、统计学与领域专业知识,为数据科学与工程领域的创新突破提供学术支撑。
约稿范围
本刊欢迎以下研究方向的投稿:
大数据架构与分布式系统
机器学习与深度学习算法
数据挖掘与知识发现
数据可视化与可视分析
数据库技术与数据仓库
数据安全与隐私保护
自然语言处理与文本挖掘
推荐系统与智能决策
数据治理与数据质量
数据科学与工程教育
目标与愿景
本刊旨在成为数据科学与工程领域的权威学术交流平台,推动理论创新与技术实践的协同发展。我们致力于促进学术界与工业界的深度合作,为研究者、工程师和教育工作者提供高质量的成果分享与学术对话平台,助力数据驱动的研究范式转型。
全球数据索引计划
本刊正在申请纳入以下国际知名学术数据库:
SCIE (Science Citation Index Expanded)
Ei Compendex
Scopus
DBLP Computer Science Bibliography
DOAJ (Directory of Open Access Journals)
Google Scholar
百度学术
万方数据
维普资讯
CNKI 中国知网
Data Science & Engineering Call for Papers
Journal Information
Journal Title (English): Data Science & Engineering
Journal Title (Chinese): 《数据科学与工程》
ISSN: 3105-7497 (print) / 3105-7500 (online)
Publishing Model: Gold Open Access (under CC BY 4.0 license)
Publisher: QUEST PRESS LIMITED
Publication Frequency: Bimonthly
Language of Submission: Chinese (must include English title, abstract, keywords, and author affiliations/names)
Core Focus
Data Science & Engineering is an international academic journal focusing on data-driven innovation and engineering practices. The journal is committed to advancing the deep integration of data science theories and methodologies with engineering applications, with particular emphasis on cutting-edge developments in big data technologies, intelligent algorithms, and systems engineering. We particularly encourage interdisciplinary research paradigms that integrate computer science, statistics, and domain expertise to provide academic support for innovative breakthroughs in data science and engineering.
Scope
We welcome submissions in the following areas:
Big Data Architecture and Distributed Systems
Machine Learning and Deep Learning Algorithms
Data Mining and Knowledge Discovery
Data Visualization and Visual Analytics
Database Technology and Data Warehousing
Data Security and Privacy Protection
Natural Language Processing and Text Mining
Recommendation Systems and Intelligent Decision Making
Data Governance and Data Quality
Data Science and Engineering Education
Aims and Vision
Our goal is to establish Data Science & Engineering as an authoritative academic exchange platform in the field of data science and engineering, promoting the coordinated development of theoretical innovation and technological practice. We are committed to fostering deep collaboration between academia and industry, providing a high-quality platform for researchers, engineers, and educators to share achievements and engage in academic dialogue, thereby facilitating the transformation towards data-driven research paradigms.
Global Indexing Plan
The journal is pursuing inclusion in the following international academic databases:
SCIE (Science Citation Index Expanded)
Ei Compendex
Scopus
DBLP Computer Science Bibliography
DOAJ (Directory of Open Access Journals)
Google Scholar
Baidu Scholar
Wanfang Data
VIP (Weipu) Information
CNKI (China National Knowledge Infrastructure)
| 往期阅览 | 更多... |
|
基于大数据的网络流量异常检测应用研究
|
||||||
|
||||||
| 张洋 | ||||||
| 摘 要:网络流量检测是识别网络环境中潜在恶意活动的关键环节。在海量网络流量数据中高效地甄别出异常流量是网络安全领域的研究核心,对于保障网络安全、优化网络运维至关重要。提出一种基于大数据分析技术的网络流量异常检测模型,通过大数据分析技术有效解决网络流量动态变化带来的问题,显著提升异常检测的准确性,有效降低误报率,为网络安全维护提供新的解决方案。 | ||||||
|
基于多粒度级联森林优化算法的网络入侵检测模型研究
|
||||||
|
||||||
| 刘铁勇 | ||||||
| 摘 要:针对大规模网络入侵方式层出不穷,为应对多形态下的网络安全威胁,提出一种基于多粒度级联森林优化算法的网络入侵检测模型。首先对原始数据进行预处理,然后融合FisherScore 算法对不同特征信息进行权重选择排序,最后将其排序后的特征信息送入级联森林的卷积层和森林层,对特征信息进行深度表达和分类,从而得到精准的分类结果。经KDD99数据集进行验证,在不同测试集占比为90%、70%和30%三组实验情况下,分别实现了98.20%、99.00%、99.27% 的分类精度。实验结果证明,所提算法能够准确识别多种网络攻击,为现有网络入侵检测提供有效区分依据。 | ||||||
|
基于区块链的低轨卫星互联网跨域数据调度设计
|
||||||
|
||||||
| 吕思雨 | ||||||
| 摘 要:针对地面业务的需求和分布非均匀导致系统资源利用率低的问题,提出一种基于区块链的跨低轨卫星互联网域数据共享方案。通过卫星节点构建区块链,实现数据的跨域调度;通过非均匀分布的接入设备数量改变矿工节点的出块难度,使得近期出块节点暂停参与矿工节点的选举过程,以降低重复的资源消耗。仿真结果表明,所提方案能够有效降低系统资源消耗和任务的平均卸载时延,在低轨卫星互联网中实现高效的跨域数据调度。 | ||||||




